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1. Introduction

* Time-evolution problems

v = f(u) (ordinary differential equations)

% = L(u) + f (partial differential equations)

* Classical methods : time-stepping (explicit/implicit)

to t1 tN,—1 tN, Eme
* Computational complexity

© Example: parabolic PDE/Backward Euler/Multigrid
° Serial: O(N; N;) = Parallel: O(log?(Ny) Ny)
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1. Introduction

Can parts of the solution later in time be computed
before the solution earlier in time is known ?

Can the processors of a parallel computer (or multi-core chip)
be assigned to different time-levels in a time-accurate
computation ?

time

> ® Many people have investigated this question in
i 1985-1995, in the ODE literature (book: Burrage)

® E.g.: waveform relaxation, space-time grid
) iteration, multiple shooting, partitioning,...

’ ¢ A new algorithm was presented in 2001 in the
—_ domain decomposition literature (without

L reference to earlier work). Since then more than
e 50 papers have appeared about this method.

Semeoee © © ® Here, we will study this algorithm and see how

> it relates to earlier work.
space |
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2. The Parareal Algorithm

A “parareal” in time discretization of PDE’s
(Lions, Maday, and Turinici, C.R. Acad.Sci. Paris, 1.332, 2001)

* The Parareal Algorithm for the model problem «' = f(u) is
defined using two propagation operators:

AT
1. G(t2,t1,u1) is a rough approximation to
u(t2) with initial condition w(t1) = u1, /\
u; u
2. F(t2,t1,u1) is a more accurate approxi-
mation to u(t2) with u(t1) = u;.

2

TAt At At At At

* |t starts with a coarse initial approximation  U? at the time
points t1,to, ..., tx, and computes U* for k = 1,2,... by a
series of correction iterations

|
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The Parareal Algorithm

For k=0,1,2,... (loop over iteration numbers)

Forn=20,1,...,N —1 (loop over the time-steps)

Ujjill = G(tni1, tn, UFD) + F(tni1, tn, UR) — G(tng1, tn, UF)

tn—l tn tn—l—l
G(tn+1,tn, Uff iteration k
o
U Uy Ur.y

F( N 1,tn,U;§)

G(tnt1,tn, Un iteration k + 1
° e -

k+1 k+1 k+1
Un—l Un Un+1

Remark : Dominant part of computation (F) is parallel (in time).
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The Parareal Algorithm

Ukt = G(tnt1, tn, USY) + Ftni1,tn, UE) = Gltns1, tn, UE)

About the convergence
* Upon convergence: F-propagator accuracy on each t,,.
* Convergence guaranteed after N iterations on tg,t1,...,tnN.

Two interpretations of Parareal
* solver for the F-equations (if iteration until convergence)
* new time-integrator (if #iterations fixed)

Typical theorem (L.M.T.-2001, for v’ = —au, u(0) = uy)
Let F(tni1,tn, UF) denote the exact solution at ¢, +1. Let G(tn11,tn, UF) be the
backward Euler approximation with time step AT'. Then,

t.) — UF| < O ATFL,
1£a§N|U(n) nl < Ch

|
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The Parareal Algorithm: Example 1

u'(t) = —u(t) +sin(t), wu(tg) = 1.0, t € [0, 30]

(trapezoidal rule, AT = 1.0 and At = 0.01)
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The Parareal Algorithm: Example 2

Brusselator

i = A+22y— (B+ 1z
y = Bz —z?y,

Parameters: A =1and B = 3.
Initial conditions: z(0) = 0, y(0) = 1.
Simulation time: t € [0,T = 12]

Discretization: fourth order Runge Kutta, AT = 312 At = %
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The Parareal Algorithm: Example 2

Brusselator
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The Parareal Algorithm: Example 2

Brusselator
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The Parareal Algorithm: Example 3 (Arenstorf orbit)

gy B
T = x — —a
J Dy D,
Y y
_ y—2i b2 L
J S )

Parameters: a = 0.01227,b=1 — a.
Initial conditions:  x(0) = 0.994, £ = 0, y(0) = 0, y(0) = —2.00158
Simulation time: ¢ € [0,7 = 17.06]

Discretization: Fourth order Runge Kutta, AT = %, At = ﬁ.
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The Parareal Algorithm: Example 3

Arenstorf orbit
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The Parareal Algorithm: Example 3

Arenstorf orbit
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The Parareal Algorithm: Example 3
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The Parareal Algorithm

°* Speedup: S = s — Nir ~ P/K
Tp Nt + K(Ntg + Strp)
© P #processors — K #iterations — N #time-steps
° tr (tg): cost of 1 step of F-propagator (G-propagator)
° Very limited speedup if many iterations !
° Not useful on single processor

* Many extensions
© 'Multilevel’ in time (Garrido, Lee, Fladmark, and Espedal)
° 'Multilevel’ in space (Fisher, Hecht, and Maday)
° ’Domain decomposition’ in space (Maday and Turinici)
© 'Subspace filtering’ (Farhat and Cortial)

* Many applications
° Fluid, structure, molecular dynamics, control, finance,...
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3. Relation to Early Papers on Parallel ODE Methods

J. Nievergelt, Parallel Methods for Integrating Ordinary
Differential Equations . Comm. of the ACM, Vol 7(12), 1964.

“For the last 20 years, one has tried to speed up numerical computation mainly by
providing ever faster computers. Today, as it appears that one is getting closer
to the maximal speed of electronic components, emphasis is put on allowing
operations to be performed in parallel. In the near future, much of numerical
analysis will have to be recast in a more “parallel" form."

A

to t1 to tNg—1 t Ny time
|
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Multiple Shooting

For the model problem
' = f(u), u(0)=uo, te0,1]

one splits the time interval into subintervals and then solves

u’6 — f(UO),
UQ(O) — Uo, (

f(u1), uy = f(uz),
Uy, u2(3) = Us,

)

wi—
CoIN

together with the conditions

2
U()—U():O, Ul—UQ(S U())—O Ug—ul(—

Ui) =0
37 1)

— FU)=0, U= U,U,U)".
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Multiple Shooting

Solving F(U) = 0 with Newton-method leads to

~ 9 —1

Uyt U 1 Uk — ug
Ut | = | UF | - [5G, U 1 UF —ui (3, U8)
Uyt vk} | —gu (2 Ub1| \U§ —wi(3,U])

Multiplying through by the matrix, we find the recurrence

UéﬁLl ==  Uo,
U™ = wuo(3,U§) + 5825, U (U = Up),
U; ™' = w(3,0F) + g3, UF) (U - UF).

General multiple shooting with NV intervals

" 5u, ! | |

|
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Parareal is a Multiple Shooting Method

Theorem: If in the multiple shooting method:

Un(tn_|_1, U ) ~ F( n—l—latnv Uk)

Ou,,

oU. (tn‘H? US)(US—I—l — US) A7 G(tn-i—lv tn, Uj’f—'_l) — G(tn—l-la tn, US)

then the multiple shooting and parareal algorithms coincide.

Proof: By observation. Compare:

Uk+1 — un(tn—l-l) UT];:) + n+1, US)(U]H_l Uk)

Ufr]i—l—'—_ll — F(tn-|—17 tn, U,,],f) + G(tn—l—lvtnv US—H) _ G(tn—i—la tn, Uqli)

Parareal=multiple shooting with a coarse approximate Jacobian

|
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Parareal is a Multiple Shooting Method

Different approximations for 9= (t,,41, UF)(UF™ — UF) lead to
different time-parallel algorithms.

* A. Bellen and M. Zennaro : (J.C.A.M. 1989)
time-parallel algorithm for difference equations

Approximate each column of Jacobian g}}n In a finite
difference way.

* C. Farhat and M. Chandesris : (Int.J.Num.Meth.Engr.
2003) time-decomposed parallel time-integrator

Compute Jacobian 8“n approximately by solving the
variational equations on the coarse mesh.

ouw, \' , ou,, ou,, B
( aU“) = Pl g, S ) =1
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Relation to Early Papers on Parallel ODE Methods

W. Miranker and W. Liniger, Parallel Methods for the
Numerical Integration of Ordinary Differential Equations
Math. Comp., Vol 21, 1967.

“It appears at first sight that the sequential nature of the numerical methods do
not permit a parallel computation on all of the processors to be performed. We
say that the front of computation is too narrow to take advantage of more than
one processor... Let us consider how we might widen the computation front."

1 /
1
o o o redict o o—L S redic
| P N P
| /
1 II
I ’
s A correct ST~ o correct
! /
tn—1 tn : tn—|—1 tn—//l tn tn—|—1
1
1

predictor-corrector method for time-integration
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Space-Time Iterative Methods

* Windowed Relaxation
J. Saltz, V. Naik, D. Nicol. Reduction of the effects of communication delays in
scientific algorithms on message passing MIMD architectures. SISC 8(1), 1987.

* Parallel Time-stepping
D. Womble. A time-stepping algorithm for parallel computers. SISC 11(5), 1990.

time

[ .

.
b

&

space

Start the iteration on a new time-level, before the iteration

on the previous time-level has converged.
|
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A Negative Result

Deshpande, Malhotra, Douglas, Schultz. A rigorous analysis of
time domain parallelism. Parallel Alg. and Appl. (6) 1995.

* if a good solver is used on each time step, no parallel
speedup is possible.

* if a very slow solver is used on each time step, a small
parallel speedup can be achieved.

Quote from the technical report 1993:

“We show that this approach is not normally useful”.

|
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Parabolic Multigrid Methods

* Apply a multigrid algorithm  on the space-time mesh

* Provide rapid information propagation forward in time, by
means of a (set of) coarse meshes.

* Three basic variants:

© Time-parallel multigrid (Hackbusch, 1984; Bastian,
Burmeiser, Horton, 1990; Horton 1992; Oosterlee, 1992;...)

© Multigrid waveform relaxation  (Lubich and Ostermann,
1987; Vdw and Piessens,1988;...)

© Space-time multigrid (Horton and Vdw, 1995)
* They differ w.r.t

© smoother (pointwise/line-wise; Jacobi/GS;...)
© coarsening (semi-coarsening in space/in time)

|
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Parareal is a (Space-) Time Multigrid Method

Multigrid Full Approximation Scheme
Given: M(u) = b (fine grid) and My (U) = by (coarse grid)

Rk = S(uF,b)
\ Mp(U*™) = LI(b- M(@")) + My (Ia")
| uhtt = a4+ I (U — 17 g")

Theorem: Parareal is a two-level full approximation multigrid
scheme with aggressive semi-coarsening in the time dimension

and with S(-, -): block Jacobi “F-smoother”, I;?: injection, and
1% trivial inclusion.

Multilevel extension possible !
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Parareal is a (Space-) Time Multigrid Method

time

An example: u; = gy, (z,t) € [0,1] x [0, 1]

(Implicit Euler, AT = 0.01, At = 0.001 Az = 0.01)

space

maximum relative error
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Another equivalence: partition method of Wang

* S. Chen and D. Kuck, "Time and parallel processor
bounds for linear recurrences”, IEEE Tr. Comp. 1975.

* H. Wang, ACM TOMS 1981.
e Collect y,11 = Ay, +b, R)n=0,1,2,...
* Solve bidiagonal (block) system in three steps

local elimination — global solve — local backsubstitution

|
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Another equivalence: partition method of Wang

* For initial value problems: Boundary Value Method
o Amodio and Brugnano (LAA 1992); Brugnano,
Mazzia, and Trigiante (APNUM 1993), ...
* Coarse system (Schur complement)

o small systems of ODEs: direct solvers (cyclic
reduction, recursive doubling, pipe-lined Gaussian
elimination)

o large (sparse) systems of ODEs: Schur
complement is dense and cannot be constructed

* Parareal is a partition method, with an iterative,
preconditioned Schur complement solver.

|
Time-Parallel Time-Integration - Wuhan-DCABES, 2009. - p. 26/35



4. Convergence Analysis

For the linear Dahlquist model problem

/

uw = —au, u(0) = ug, R(a) > 0.

Let F(t,41,t,, UF) denote the exact solution at ¢,,,1.

Let G(t,11,tn, UX) = BUF be a one step method with AT such
that it is in its region of absolute stability, i.e., |5| < 1.

Let the local truncation error be bounded by CATP*!,

Theorem: Superlinear Convergence on Finite Time windows

CT)\k
max_|u(t,) — U%| < QATpk max _|u(t,) — U2
1<n<N k! 1<n<N

Theorem: Linear Convergence on Infinite Time windows

CATP "
t.) — UF| < tn) — UY.
suplu(tn) ~ U < (g oy ) Supluttn) — U2
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Convergence: u' = —au, —aAT € C~ (G = B.Euler)

|
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Convergence factor for v’ = —au (discrete F' and G3)

Trap(1)-BE, RadllA(1)-BE, Trap(10)-BE, RadIIA(10)-BE

’ \ o.z/

101
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10 T T T T T
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+= Lions, Maday, Turinici
= New superlinear bound
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A numerical experiment: ©'=—u, u(0)=1,t€[0,T]

Convergence as a function of AT, for fixed At = 0.05.
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Convergence for the Heat Equation

Theorem: The parareal algorithm applied to the heat equation
u; = Au | discretized with an L-stable method in time converges
superlinearly on bounded time intervals,

Lk

k /yS 5 0

— < — N — _

max Jlu(ta) = Uylle < 37 ] |1< i) max, u(tn) — U]l
J:

The convergence is linear on on unbounded time intervals,

sup ||u(ty) — Uyllz < 7 sup [Ju(tn) — Upll2

n>0 n>0
method order Vs Y1
BE 1 0.2036 | 0.2984
SDIRK 3 0.2073 | 0.1718
Radau IIA 5 0.0634 | 0.0677
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A numerical experiment. U = Uy,

+ 1wy, fort €0, 7]

with AT = 0.5, At = 0.05 and Ax
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Convergence for pure Advection Problems

Theorem: The parareal algorithm applied to the advection
equation |u; = u, | with backward Euler in time converges

superlinearly on bounded time intervals,

k
k g : 0
e u(tn) — Uy ll2 < Tl 1_[1(]\7 —7) A u(tn) — U2,

k
]:

where the constant o, = 1.224.

Remark:

* The superlinear convergence regime sets in only after many
iterations.

* There is linear divergence for unbounded time intervals in
the case of pure advection, with o; = 1.632.

|
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5. Concluding Remarks

* Parareal can speed up a computation by exploiting
time-parallelism. It is not effective as a serial algorithm.

* |tis a special type of multiple shooting method or
space-time multigrid method.

* |tis also an iterative Schur complement solver, a deferred
correction method, a predictor-corrector method, ...

* The convergence for linear ODE and PDE model problems
© superlinear on bounded intervals
° linear on unbounded intervals

* Implementation is straightforward (5 lines of code), given a
fast (inaccurate) code and a slow (accurate) code.

Reference : Gander M. and Vandewalle S., Analysis of the Parareal Time-Parallel

Time-Integration Method, SIAM J. Sci. Comp., Vol. 29(2), pp. 556-578, 2007. |
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